Autologous Tumor Lysate-Loaded Dendritic Cell Vaccination for Glioblastoma

Dr. Paul Mulholland, MBBS, MSc, PhD, FRCP
University College Hospital

Frontiers in Cancer Immunotherapy
New York Academy of Science

May 10, 2022
Presentation Overview

Innovative Trial Design of DCVax®-L Phase 3 Trial

Results of DCVax®-L Phase 3 Trial
GBM Is a Particularly Difficult Cancer

Most common and lethal primary brain cancer

- Aggressive
- Immunologically “cold”
- Extremely heterogeneous
- Invasive phenotype; difficult to resect
- Nearly 100% recurrence rate

Standard of Care (SOC)
Surgery + 6 weeks daily chemo/radiation + monthly chemo

Survival

Newly diagnosed GBM patients: mOS ~15-17 months from surgery
Time to tumor recurrence: ~7-8 months from surgery
Recurrent GBM patients: mOS ~8 months from recurrence
5-year survival: <5%
GBM Clinical Trials – Years of Failures; Wide Range of Treatments Tested

2005-2016

- 417 clinical trials for Glioblastoma;
- 31,952 patients
- only 16 Phase 3 trials; only 1 positive (TFF device)

2016-2021

More failures of large Glioblastoma trials

- Checkpoint inhibitors
- CAR-Ts
- Peptide vaccines
- Gene therapy
- Chemo
- DCs + standardized peptides
GBM Survival Remains Dismal

- Temodar approved for newly diagnosed GBM in 2005 based on adding 2.5 months’ survival

- No systemic treatment has extended newly diagnosed GBM survival in 17 years since then

- Gliadel wafer approved for recurrent GBM in 1995 based on adding 2 months’ survival

- No treatment of any type has extended recurrent GBM survival in 27 years since then
DCVax®-L Phase 3 Trial: Innovative Trial Design
Trial Overview

Treatment: Autologous dendritic cells (DCs) pulsed with autologous tumor lysate (DCVax®-L). Intra-dermal injections in arm.

Trial design: Double-blind randomized trial with crossover

331 patients, 94 trial sites in 4 countries
(one of the largest trials of a personalized cell therapy)

Timeline:
- Began 2007
- Enrollment suspended 2008-2011 for financial reasons
- 92% of patients enrolled 2012-2015
- Last patient enrolled November 2015
- Long-term survival follow-up to determine survival tail
Screening and Enrollment

Surgery (<1 week after start of screening)
Leukapheresis (~3 weeks after surgery)

Day 0: Enrollment and Randomization (~10 days after eligibility scan)

Chemo/radiation (6 weeks)

Treatment with DCVax-L or Placebo + SOC adjuvant temozolomide

Manufacturing of DCVax-L for all prospective patients

Average time: 3.1 months

Start of Screening

End of Screening

Treatment Schedule

3 treatments in Month 1: Days 0, 10, 20
3 booster treatments: Months 2, 4, 8
Treatments 2X per year for maintenance
Crossover Design

All patients could cross over to receive DCVax-L following tumor recurrence

All parties (patients, physicians, sponsor, CRO) remained blinded as to what treatment received before crossover

Crossover was necessary for feasibility and ethical reasons:

- **Necessary for enrollment and retention of patients** in era when immune therapies not yet generally viewed as promising for cancer

- Important to justify all patients undergoing **invasive leukapheresis procedure**. No benefit to placebo patients unless they could receive their autologous product made from the leukapheresis.
Progression Free Survival & Pseudo-Progression

Original primary endpoint, when trial designed in 2007: Progression-Free Survival (PFS)

While the trial was underway, Pseudo-progression (PsPD) became recognized as major issue -- difficulty distinguishing real vs. PsPD

PsPD is an even bigger issue with immune cell therapies: vaccine-induced infiltration of immune cells

PFS endpoint not feasible due to PsPD. So, SAP focused on OS, and specified OS as the primary endpoint before unblinding.
• PFS was not significantly different between the DCVax-L arm and placebo arm: p=0.47

• mPFS was 6.2 months (95% CI: 5.7-7.4 months) for DCVax-L patients; mPFS was 7.6 months (95% CI: 5.6-10.9 months) for placebo patients

• The results in DCVax-L patients may reflect vaccine-induced PsPD.
Overall Survival Endpoints & External Controls

Since PFS was not feasible as the primary endpoint, due to PsPD, the SAP focused OS endpoints.

OS endpoints **could not be within-study comparisons** of DCVax-L patients vs. placebo patients, because placebo patients received DCVax-L following crossover.

So, the OS endpoints compared DCVax-L patients with **external controls**.

This approach fits well with growing commentary in support of streamlined trial designs and use of external controls where classic within-study comparisons are not feasible.

This approach also enabled two OS endpoints: nGBM and rGBM.
Primary Endpoint: OS in newly diagnosed GBM
DCVax-L arm (n=232) vs. External controls (n=1,366) (control arms of external studies)

Secondary Endpoint: OS in recurrent GBM
Placebo arm crossovers* (n=64) vs. External controls (n=640) *(Placebo arm patients received only SOC + placebo until recurrence, then DCVax-L) (control arms of external studies)

This SAP and its Endpoints were pre-specified and submitted to regulators before unblinding.
External Controls: Sources and Validation
External Controls: Process & Selection Criteria

Independent expert firm (not sponsor) evaluated other GBM trials, and selected the most closely matched using 14 criteria:

- Contemporaneous, same patient population, same SOC, RCT design, etc.

The independent expert selected 5 nGBM trials & 10 rGBM trials

The control arm patients from these comparator trials served as the external controls for the DCVax-L trial

- Controls from nGBM trials => controls for nGBM DCVax-L patients
- Controls from rGBM trials => controls for rGBM DCVax-L patients

These external controls were pre-specified in the Statistical Analysis Plan (SAP) for the DCVax-L trial
External Controls: Validation

4 sets of analyses were conducted to obtain controls rigorously matched to the DCVax-L study population, minimize potential biases and confirm the robustness of the survival results.

1. Matching of the DCVax-L trial and the comparator trials
 Matching of the trials whose control arm patients served as external controls for DCVax-L trial, using 14 criteria as described above.

2. Validation of the external controls approach
 For each comparator study, the treatment arm was compared against the external controls determined for DCVax-L trial. For each of the 15 comparator studies, results were same as originally reported.
3. Sensitivity analyses to check for comparator differences

5 sensitivity analyses conducted, removing each of the 5 comparator studies for nGBM, one at a time. No change in comparison with DCVax-L trial seen.

6th sensitivity analysis removed 2 of the 5 comparator trials, in which it was unclear whether they excluded patients with early progression as did other 3 comparators and the DCVax-L trial. No change in comparison seen.

4. Adjustments for individual patient characteristics

Matching Adjusted Indirect Comparison (MAIC) methodology used to adjust for even small differences in individual patient characteristics. Comparison of DCVax-L vs. external controls OS remained statistically significant. (Propensity score matching was not feasible with the available data.)
External Controls for nGBM – 5 Comparator RCTs

<table>
<thead>
<tr>
<th>Study</th>
<th>n</th>
<th>Median OS (months)</th>
<th>95 CI (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gilbert et al 2013</td>
<td>411</td>
<td>16.6</td>
<td>14.9 – 18.0</td>
</tr>
<tr>
<td>Gilbert et al. 2014</td>
<td>309</td>
<td>16.1</td>
<td>14.8 – 18.7</td>
</tr>
<tr>
<td>Weller et al. 2017</td>
<td>374</td>
<td>17.4</td>
<td>16.2 – 18.8</td>
</tr>
<tr>
<td>Stupp et al. 2017</td>
<td>229</td>
<td>16.0</td>
<td>14.0 – 18.4</td>
</tr>
<tr>
<td>Wen et al. 2019</td>
<td>43</td>
<td>15.0</td>
<td>12.3 – 23.1</td>
</tr>
<tr>
<td>Aggregate Newly Diagnosed(^1)</td>
<td>1,366</td>
<td>16.5</td>
<td>16.0 – 17.5</td>
</tr>
</tbody>
</table>

1) Based on reconstructed individual patient data (IPD)

These are leading contemporaneous studies in the field; well known.
External Controls for nGBM – Patient Demographics and Prognostic Factors

<table>
<thead>
<tr>
<th></th>
<th>Age</th>
<th>Sex</th>
<th>KPS</th>
<th>MGMT</th>
<th>IDH-1</th>
<th>Resection</th>
<th>Res. Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>411</td>
<td>27</td>
<td>73</td>
<td>58</td>
<td>42</td>
<td>34</td>
<td>66</td>
</tr>
<tr>
<td>Gilbert 2013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>309</td>
<td>21</td>
<td>79</td>
<td>63</td>
<td>37</td>
<td>39</td>
<td>62</td>
</tr>
<tr>
<td>Gilbert 2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>229</td>
<td>80</td>
<td>20</td>
<td>69</td>
<td>31</td>
<td>32</td>
<td>65</td>
</tr>
<tr>
<td>Stupp 2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>374</td>
<td>77</td>
<td>23</td>
<td>61</td>
<td>39</td>
<td>35</td>
<td>58</td>
</tr>
<tr>
<td>Weller 2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>43</td>
<td>28</td>
<td>72</td>
<td>67</td>
<td>33</td>
<td>72</td>
<td>28</td>
</tr>
<tr>
<td>Wen 2019</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All nGBM ECP</td>
<td>1366</td>
<td>25</td>
<td>75</td>
<td>77</td>
<td>23</td>
<td>62</td>
<td>38</td>
</tr>
<tr>
<td>nGBM DCVax</td>
<td>232</td>
<td>25</td>
<td>75</td>
<td>78</td>
<td>22</td>
<td>59</td>
<td>41</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Newly Diagnosed GBM (nGBM)</th>
<th>Comp</th>
<th>Part</th>
<th>Gli</th>
<th>Other/Missing</th>
<th>Significant</th>
<th>Minimal</th>
<th>Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>44</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>39</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>54</td>
<td>34</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>26</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
External Controls for rGBM – 10 Comparator RCTs

<table>
<thead>
<tr>
<th>Study</th>
<th>n</th>
<th>Median OS (months)</th>
<th>95 CI (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wick et al. 2010</td>
<td>92</td>
<td>7.1</td>
<td>6.0 – 8.8</td>
</tr>
<tr>
<td>Taal et al. 2014</td>
<td>46</td>
<td>8.0</td>
<td>6.0 – 11.0</td>
</tr>
<tr>
<td>Brandes et al. 2016</td>
<td>40</td>
<td>7.5</td>
<td>5.6 – 10.3</td>
</tr>
<tr>
<td>Cloughesy et al. 2017</td>
<td>65</td>
<td>12.6</td>
<td>n.a.</td>
</tr>
<tr>
<td>Wick et al. 2017</td>
<td>149</td>
<td>8.6</td>
<td>7.6 – 10.4</td>
</tr>
<tr>
<td>Brandes et al. 2018</td>
<td>62</td>
<td>5.5</td>
<td>3.9 – 7.2</td>
</tr>
<tr>
<td>Galanis et al. 2019</td>
<td>38</td>
<td>7.7</td>
<td>n.a.</td>
</tr>
<tr>
<td>Lombardi et al. 2019</td>
<td>60</td>
<td>5.6</td>
<td>4.7 – 7.3</td>
</tr>
<tr>
<td>Narita et al. 2019</td>
<td>30</td>
<td>8.0</td>
<td>4.8 – 12.9</td>
</tr>
<tr>
<td>Lee et al. 2020</td>
<td>58</td>
<td>11.5</td>
<td>8.4 – 14.2</td>
</tr>
</tbody>
</table>

| Aggregate Recurrent GBM | 640 | 7.8 | 7.2 – 8.2 |

1) Based on reconstructed individual patient data (IPD);
2) not available from referenced publication
External Controls for rGBM – Patient Demographics and Prognostic Factors

<table>
<thead>
<tr>
<th></th>
<th>Age</th>
<th>Sex</th>
<th>Race</th>
<th>MGMT</th>
<th>IDH-1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>Median</td>
<td><50</td>
<td>50</td>
<td>Male</td>
</tr>
<tr>
<td>Cloughesy 2017</td>
<td>65</td>
<td>55</td>
<td>26</td>
<td>74</td>
<td>60</td>
</tr>
<tr>
<td>Wick 2010</td>
<td>92</td>
<td>30</td>
<td>70</td>
<td>61</td>
<td>39</td>
</tr>
<tr>
<td>Brandes 2016</td>
<td>40</td>
<td>58</td>
<td>43</td>
<td>73</td>
<td>3</td>
</tr>
<tr>
<td>Wick 2017</td>
<td>149</td>
<td>60</td>
<td>20</td>
<td>80</td>
<td>61</td>
</tr>
<tr>
<td>Narita 2019</td>
<td>30</td>
<td>59</td>
<td>63</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>Brandes 2019</td>
<td>62</td>
<td>59</td>
<td>73</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Taal 2014</td>
<td>46</td>
<td>56</td>
<td>57</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>Lombardi 2019</td>
<td>60</td>
<td>59</td>
<td>72</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Lee 2020</td>
<td>58</td>
<td>58</td>
<td>29</td>
<td>71</td>
<td>62</td>
</tr>
<tr>
<td>Galanis 2019</td>
<td>38</td>
<td>57</td>
<td>58</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>All rGBM ECP</td>
<td>640</td>
<td>25</td>
<td>75</td>
<td>63</td>
<td>38</td>
</tr>
<tr>
<td>rGBM DCVax</td>
<td>64</td>
<td>56</td>
<td>27</td>
<td>73</td>
<td>66</td>
</tr>
</tbody>
</table>
020221 Study Results
Overall Results

- **Primary endpoint met (mOS in nGBM),** with statistical significance

- **Secondary endpoint met (mOS in rGBM),** with statistical significance

- **Excellent safety profile:**
 - 2,193 doses of DCVax®-L administered
 - only 5 SAEs at least possibly related
 - No autoimmune reactions
 - No cytokine storms
Overall Results – 5 Key Data Points

NEWLY DIAGNOSED GBM:

- mOS: 19.3 mos from randomization (22.4 mos from surgery) vs. 16.5 mos from randomization in controls

- mMGMT mOS: 30.2 mos from randomization (33 mos from surgery) vs 21.3 mos from randomization in controls

- Survival Tail: 13% vs 5.7% at 5 years

RECURRENT GBM:

- mOS: 13.2 mos vs. 7.8 mos from recurrence

- Survival Tail: 20.7% vs. 9.6% at 24 mos after recurrence
 11.1% vs. 5.1% at 30 mos after recurrence
Innovation

- First Phase 3 trial of a systemic treatment in 17 years to show a significant extension of mOS in nGBM.

- First Phase 3 trial of any type of treatment in 27 years to show a significant extension of mOS in rGBM.

- One of the first, if not the first, Phase 3 trial to show meaningful increases in the long-term tails of the survival curves in both nGBM and rGBM.
Broader Perspective

• DCVax-L suitable for combinations with wide range of other treatments
 (checkpoint inhibitors, oncolytic viruses, cytokines, chemo, etc.)

• When a DCVax-L patient has recurrence(s), new batch(es) of DCVax-L can be made
 (treatment targets not lost, as they are with targeted therapies)

• DCVax-L can potentially apply to any type of solid tumor
 (multiple other cancers treated in compassionate uses cases and a prior small pilot trial)

• DCVax-L can be administered in community settings as well as major cancer centers.
Future Opportunities for Combination Therapies

Datsi A, Sorg RV. *Frontiers in Immunology*, 2021
Newly Diagnosed GBM
Overall Survival in Newly Diagnosed GBM

Hazard Ratio 0.80 (-, 0.94)
DCVax-L vs External (98% CI)

p-value <0.002
1-sided log-rank

mOS of DCVax arm = 19.3 mos from randomization; 22.4 mos from surgery
mOS of controls = 16.5 mos from randomization
Survival Tail In Newly Diagnosed GBM

Landmark Survival Rate (%) in nGBM measured from date of randomization*
(3 months after surgery)

<table>
<thead>
<tr>
<th></th>
<th>External (n = 1366)</th>
<th>DCVax-L (n=232)</th>
<th>Comparative Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>36 months</td>
<td>15.5%</td>
<td>20.2%</td>
<td>130%</td>
</tr>
<tr>
<td>48 months</td>
<td>9.9%</td>
<td>15.7%</td>
<td>159%</td>
</tr>
<tr>
<td>60 months</td>
<td>5.7%</td>
<td>13.0%</td>
<td>>228%</td>
</tr>
</tbody>
</table>
Pre-Defined Sub-Groups: Summary

Hazard Ratio (two-sided 95% CI)

- Age ≥ 65
 - 0.4
 - 0.63
 - 0.99

- Age < 65
 - 0.62
 - 0.78
 - 0.98

- Significant Residual Disease
 - 0.48
 - 0.65
 - 0.87

- Minimal Residual Disease
 - 0.73
 - 0.95
 - 1.22

- MGMT Methylated
 - 0.55
 - 0.74
 - 1.0

- MGMT Unmethylated
 - 0.75
 - 0.93
 - 1.14
Newly Diagnosed GBM: Age ≥ 65

Hazard Ratio 0.63 (--, 0.99)
DCVax-L vs External (97.591% CI)

p-value 0.021
1-sided log-rank

Probability of Overall Survival

Months from Randomization

Number at Risk

<table>
<thead>
<tr>
<th></th>
<th>50</th>
<th>30</th>
<th>17</th>
<th>11</th>
<th>6</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>24</td>
<td>11</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Newly Diagnosed GBM: Age < 65

Hazard Ratio 0.78 (0.7, 0.98)
DCVax-L vs External (97.59% CI)

p-value 0.016
1-sided log-rank
Newly Diagnosed GBM: Significant Residual Disease

Hazard Ratio 0.56 (-, 0.71)
DCVax-L vs External (97.591% CI)

p-value < 0.001
1-sided log-rank

Number of Patients at Risk:

<table>
<thead>
<tr>
<th>Time (months)</th>
<th>0</th>
<th>12</th>
<th>24</th>
<th>36</th>
<th>48</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>External Controls</td>
<td>163</td>
<td>98</td>
<td>19</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DCVax-L</td>
<td>86</td>
<td>63</td>
<td>25</td>
<td>14</td>
<td>13</td>
<td>9</td>
</tr>
</tbody>
</table>
Newly Diagnosed GBM: Minimal Residual Disease

Hazard Ratio 1.01 (-, 1.43)
DCVax-L vs External (97.591% CI)

p-value 0.524
1-sided log-rank

Probability of Overall Survival

Months from Randomization

Number at Risk

146 115 56 31 22 16
210 169 53 7 0 0
Newly Diagnosed GBM: MGMT Methylated

Hazard Ratio 0.74 (-, 1.19)
DCVax-L vs External (99.9% CI)

p-value 0.027
1-sided log-rank

mMGMT DCVax-L patients mOS = 30.2 mos from randomization; 33 mos from surgery
mMGMT control patients mOS = 21.3 mos from randomization
Newly Diagnosed GBM: MGMT Unmethylated

Hazard Ratio 0.93 (-, 1.15)
DCVax-L vs External (97.591% CI)

p-value 0.238
1-sided log-rank

Probability of Overall Survival

Months from Randomization

Number at Risk

<table>
<thead>
<tr>
<th></th>
<th>131</th>
<th>90</th>
<th>25</th>
<th>14</th>
<th>10</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number at Risk</td>
<td>349</td>
<td>207</td>
<td>73</td>
<td>15</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>
Recurrent GBM
Overall Survival in Recurrent GBM

Hazard Ratio 0.58 (-, 0.76)
Placebo Crossed Over vs. External (97.591% CI)

p-value <0.001
1-sided log-rank

mOS = 13.2 months from recurrence with DCVax-L vs. 7.8 months in controls
Survival Tail in Recurrent GBM

<table>
<thead>
<tr>
<th>Landmark Survival Rate (%) in rGBM Measured from Date of Recurrence</th>
<th>External* (N = 640)</th>
<th>DCVax-L (N = 64)</th>
<th>Comparative Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 months</td>
<td>64.0%</td>
<td>90.6%</td>
<td>142%</td>
</tr>
<tr>
<td>12 months</td>
<td>30.8%</td>
<td>54.1%</td>
<td>175%</td>
</tr>
<tr>
<td>18 months</td>
<td>15.9%</td>
<td>31.8%</td>
<td>200%</td>
</tr>
<tr>
<td>24 months</td>
<td>9.6%</td>
<td>20.7%</td>
<td>215%</td>
</tr>
<tr>
<td>30 months</td>
<td>5.1%</td>
<td>11.1%</td>
<td>217%</td>
</tr>
</tbody>
</table>
Why/How Does DCVax-L Work?
Key Characteristics of DCVax-L

1. Uses master cells of immune system: dendritic cells
 - Mobilizes multiple elements of the immune system

2. Fully personalized
 - Inherently targets antigens actually on the patient’s tumor -- fits the patient’s version of the cancer.

3. Uses **ALL** tumor antigens, not just 1 or a few
 - Makes it difficult for tumors to mutate around the antigens targeted. Minimizes tumor escape after (or during) treatment.

Addresses extensive complexity and variability of solid tumors.
Large Multiplier: Dendritic Cell Activates

Hundreds of T Cells, Diverse T Cells & Other Immune Cells

- Dendritic Cell
- **tumor target proteins**
- anti-cancer T cell activated
- resting anti-cancer T cell attaches to DC
- activated anti-cancer T cells divide rapidly
- activated anti-cancer T cells travel to tumor site
T Cells Can Cross the Blood Brain Barrier; T Cells Infiltrate Glioblastoma Tumors After DCVax-L

Infiltration of T cells into Glioblastoma tumors is observed in patients treated with DCVax®-L

Both CD4 and CD8 T cells are seen

L. Liau et al.
Conclusions (1)

• The completion of a large, phase 3 trial including 331 patients, 94 sites, over 70 clinical investigators, in 4 countries using an autologous, dendritic cell, tumor lysate (DCVax-L) shows efficacy to meet the primary and secondary end-points of an increase in O.S. for nGBM and rGBM

• The vaccine is easily administered and has a favorable safety profile.

• The use of external, contemporaneous clinical trials (n = 5 for nGBM and n =10 for rGBM) is innovative, and going forward, could be transformative given the poor track record and numerous failed trails in neuro-oncology.

• There is a significant percentage of long-term survivors, consistent with an immune memory effect by the T-cells, potentially changing the natural history of GBM from a uniformly fatal to a chronic, manageable disease.
Conclusions (2)

• Specific subpopulations show an unanticipated benefit including; a) older patients, and b) patients with residual disease after surgery. As expected, patients with methylated MGMT promoter fare better than unmethylated group.

• The feasibility of the vaccination process enables widespread application in the community setting, as well as in major academic centers of excellence.

• The use of dendritic cells as the master, professional antigen presenting cells allows for combination therapy using other approaches such as blockade of immunosuppressive cytokines, CAR T cells, viral oncolytic therapy, electric field therapy, DNA vaccines, etc.

• Preliminary data shows evidence of T cell infiltration into the target tissue (Glioblastoma).
Summary

Patients treated with DCVax-L showed a clinically meaningful and statistically significant extension of survival...

...in both newly diagnosed and recurrent GBM,

...with an excellent safety profile, and

...noteworthy long tails of survival.
Acknowledgments

• **UCLA** (US lead): Prof. Linda Liau and Dr. Robert Prins

• **Kings College Hospital** (Europe lead): Prof. Keyoumars Ashkan

• **Trial Steering Committee:**
 - Prof. Steven Brem (UPenn)
 - Dr. Jian Campian (Wash. U., now Mayo Clinic)
 - Dr. Fabio Iwamoto (Columbia University)
 - Dr. John Trusheim (Allina Health)

• **Investigators and sub-investigators** of the 020221 trial

• **Patients and their families**