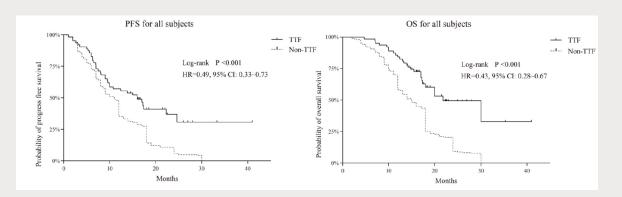
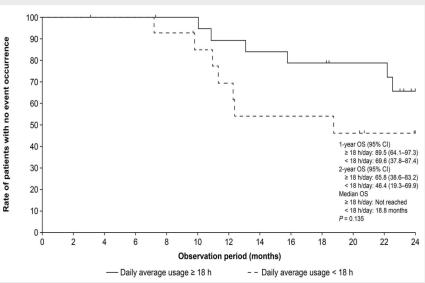
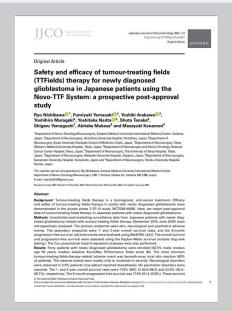


real-world evidence showed ndGBM median overall survival extension by over 12 months in the high use TTFields group

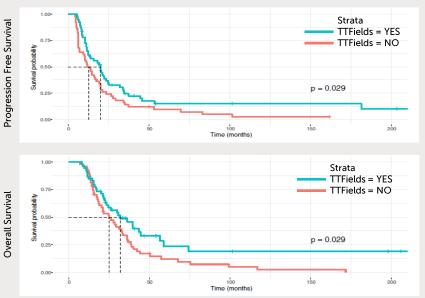


real-world evidence validates EF-14 with statistically significant improvement in PFS and OS in Chinese patients with ndGBM

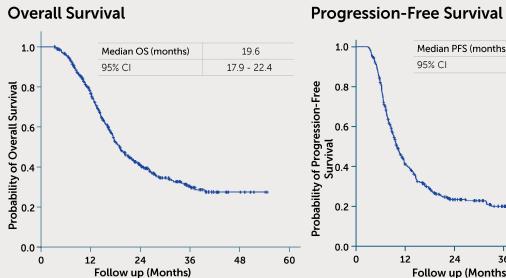

	Median OS	Median PFS
TTFields + TMZ (n=63)	21.8 mo	16.0 mo
TMZ alone (n=204)	15.0 mo	11.0 mo

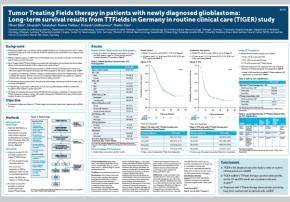


post-approval study supports safety and efficacy profile of TTFields therapy in ndGBM Japanese patients, validating EF-14 improved survival rates


	1-year survival	2-year survival
TMZ alone ¹	65%	31%
TTFields + TMZ (n=14)	77.9%	53.6%
TTFields + TMZ high use group (n=21)	89.5%	65.8%

long term study of ndGBM patients, covering 18-year period, confirms TTFields' positive effect on PFS and OS

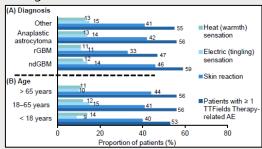

	median PFS	median OS
TTFields + TMZ (n=55)	19.75 mo	31.67 mo
TMZ alone ¹	12.45 mo	24.80 mo



TIGER study of routine clinical care in German ndGBM patients corroborates overall survival and safety outcomes from EF-14

review article identifies TTFields therapy as one of few factors driving increased overall survival in GBM patients since the 2005 Stupp-protocol

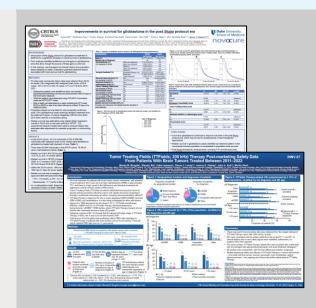
FOR MORE INFORMATION USE THE QR CODE:


Neff et al.

Characteristic		HR ¹	95% CI ¹	p-value
Age (years)	19,414	1.02	1.02, 1.03	<0.001
Sex				
Female	8,046	_	_	reference
Male	11,368	1.10	1.07, 1.14	<0.001
Elixhauser Comorbidity Score	19,414	1.01	1.01, 1.01	<0.001
Tumor-Treating Fields (ever)				
No	16,353	_	_	reference
Yes	3,061	0.77	0.73, 0.80	<0.001
Received radiation or radiosurgery (ever)				
No	7,370	_	_	reference
Yes	12,044	0.88	0.85, 0.91	<0.001
Bevacizumab (ever)				
No	15,741	_	_	reference
Yes	3,673	0.85	0.82, 0.88	<0.001

In this commercially insured dataset, TTFields improved OS to a greater extent (HR=0.77) vs. Bevacizumab (HR=0.85) or Radiation use (HR=0.88)

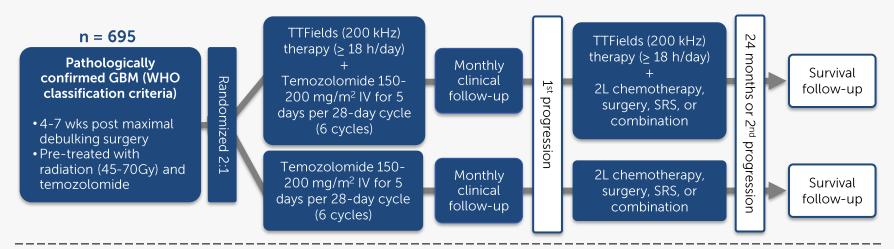
TTFields subset n=3,061 over 6 years


Mrugala et al.

AEs were consistent with the safety profile from the pivotal EF-11 and EF-14 clinical studies

n=23,822 over 11 years

Annual Meeting and Education Day of the Society for Neuro-Oncology, November 17-20, 2022, Tampa, FL: SNO; 2022. Abstract INNV-07



novœure°

EF-14 phase 3 pivotal trial evaluated Optune Gio + TMZ in 695 patients with ndGBM

Start date: June 2009

Primary completion: December 2016

ClinicalTrials.gov. NCT00916409

Study completion: March 2017

Study sites: 83 (global)

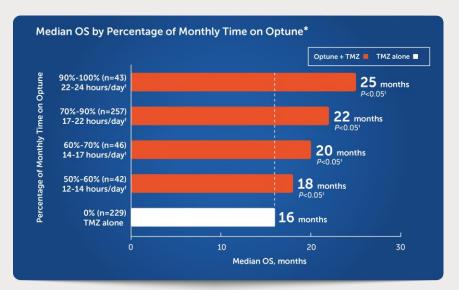
Primary endpoint:

• Progression-free survival

Secondary endpoints:

Overall survival

in ndGBM, Optune Gio + TMZ provided an unprecedented long-term survival benefit



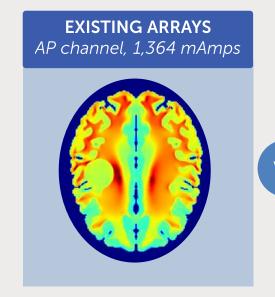
more time on Optune Gio predicted increased significant survival benefit

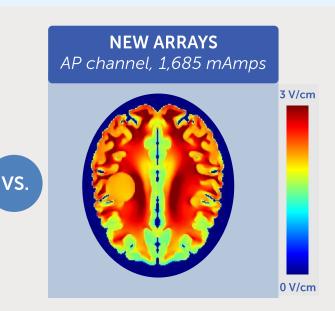
FOR MORE INFORMATION, USE THE QR CODE:

29.3%

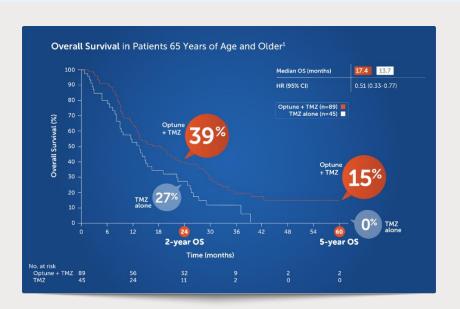
vs. 4.5%

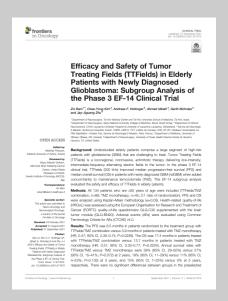
5-YEAR PROBABILITY OF SURVIVAL WITH 90% COMPLIANCE (n=43) VS SURVIVAL WITH TMZ ALONE



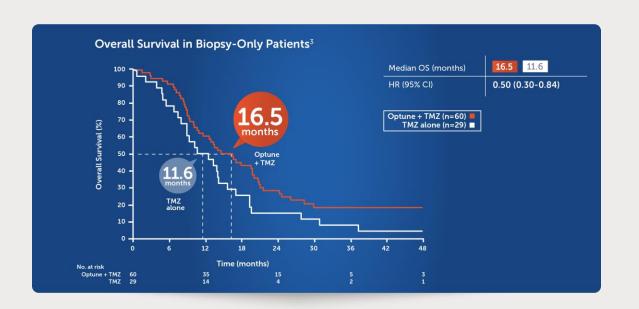

higher TTFields therapy dose can lead to increased efficacy

all analyzed subgroups experienced a benefit when adding Optune Gio to TMZ

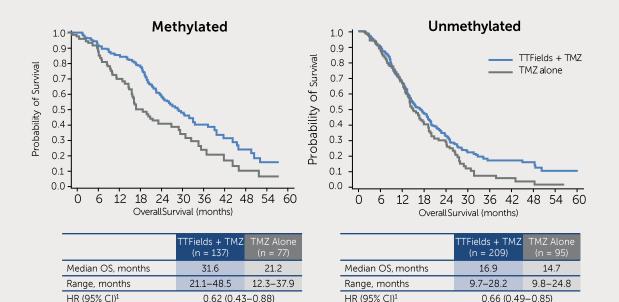

		Median surviv	al (month	ns)
Subgroup	Opt	une + TMZ TMZ		Hazard ratio (95% CI)
MGMT promoter	Unmethylated	16.9	14.7	+
methylation	» Methylated	31.6	21.2	-
	Biopsy	16.5	11.6	
Resection	Partial	21.4	15.1	-
	» Gross total	22.6	18.5	-
	»<65 years	21.6	17.3	+
Age	≥65 years	17.4	13.7	-
	» 90-100	23.3	17.8	+
KPS	≤80	14.9	11.0	
Sex	Women	24.6	18.5	+
	» Men	19.1	15.5	+
	Total	20.9	16.0	+
			Optune -	0.1 ← 1.0 → 10 + TMZ better TMZ



Optune Gio was associated with increased survival in patients 65 years and older



biopsy-only patients using Optune Gio had longer median overall survival



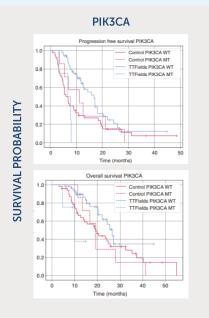
survival benefit occurred independently of MGMT methylation status

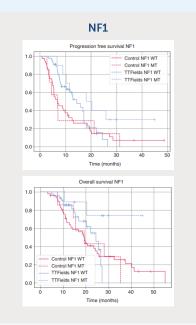
Optune Gio has a strong safety profile with no significant increase in serious AEs compared with TMZ alone

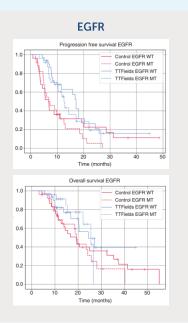
Incidence of grade 3/4 AEs occurring in ≥5% of patients during 5 years of follow-up	Optune + TMZ (n=456) %	TMZ alone (n=216) %
≥1 AE	48	44
Blood and lymphatic system disorders Thrombocytopenia	13 9	11 5
Gastrointestinal disorders	5	4
Asthenia, fatigue, and gait disturbance	9	6
Infections	7	5
Injury, poisoning, and procedural complications (falls and medical device site reaction)	5	3
Metabolism and nutrition disorders (anorexia, dehydration, and hyperglycemia)	4	5
Musculoskeletal and connective tissue disorders	5	4
Nervous system disorders Seizures	24 6	20 6
Respiratory, thoracic, and mediastinal disorders (pulmonary embolism, dyspnea, and aspiration pneumonia)	5	5

HCPs and patients reported stable quality of life up to 1 year of Optune Gio use

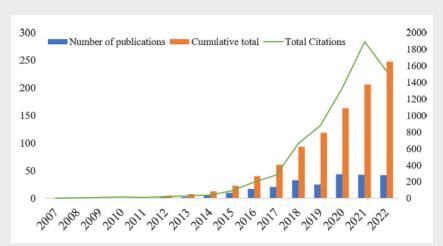
meta-analysis in ndGBM showed significant improvement in OS, and usage ≥75% consistently prolonged survival, corroborating pivotal trial data


Source	TTFields + SOC (N)	SOC alone (N)	HR (95% CI)	HR (95% CI)	W
Stupp et al. 2017	466	229	+	0.63 (0.53-0.76)	39.8
Liu et al. 2020	37	67	-	0.93 (0.58-1.47)	11.9
Chen et al. 2022	63	204		0.43 (0.28-0.67)	13.2
Ballo et al. 2022	59	32	-	0.63 (0.38–1.05)	10.3
Pandey et al. 2022	55	57		0.54 (0.31-0.94)	8.9
Vymazal et al. 2023	55	54		0.61 (0.39-0.95)	12.8
She et al. 2023	13	39		1.21 (0.45-3.29)	3.0
Overall	748	682	•	0.63 (0.53-0.75) (P<0.001)	100.0
		0.1	. 0.2 0.5 1 2 5	10	
		Favo	rs TTFields + SOC Favors SOC	alone	



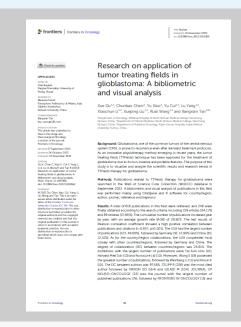


TTFields therapy provide consistent activity for patients with GBM irrespective of molecular alterations



the therapeutic potential of TTFields therapy becoming a research "hotspot"

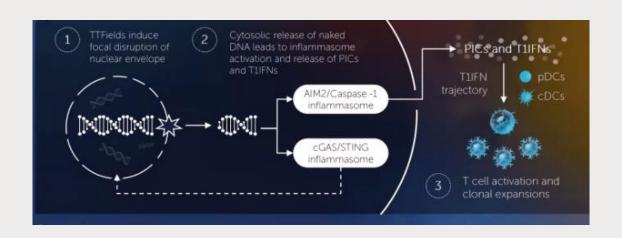
FOR MORE INFORMATION, USE THE QR CODE:



Number of annual publications, annual cumulative number of publications and annual total citations of TTFields related literature from 2007 to September 2022. (Decline in 2022 citations due to partial year)

28.5%

AVERAGE INCREASE
IN THE CUMULATIVE
NUMBER OF
PUBLICATIONS
RELATED TO TTFIELDS



TTFields therapy activates inflammasomes to induce adjuvant immunity in GBM

FOR MORE INFORMATION, USE THE QR CODE:

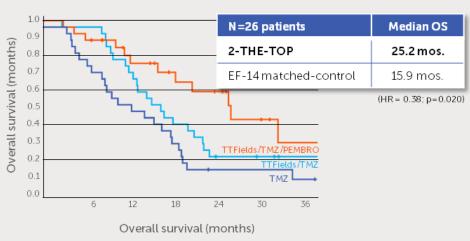
Tumor Treating Fields dually activate STING and AIM2 inflammasomes to induce adjuvant immunity in gliplobastoma

Begins (Part 17 or 8. 12 to 1900. Realizables). And Aim2 inflammasomes to induce adjuvant immunity in gliplobastoma

Begins (Part 17 or 8. 12 to 1900. Realizables). And Aim2 inflammasomes to induce adjuvant immunity in gliplobastoma

Begins (Part 17 or 8. 12 to 1900. Realizables). And Aim2 inflammasomes to induce adjuvant immunity in gliplobastoma

Begins (Part 17 or 8. 12 to 1900. Realizables). And Aim2 induced a Careau; Variables Scientific 'Dos jor, 'Tury' lab.' Address (Part 18 to 1900. Realizables). And Aim2 induced Realizables Scientific 'Dos jor, 'Tury' lab.' Address (Part 1900. Realizables). And Aim2 induced Realizables Scientific 'Dos jor, 'Tury' lab.' Address (Part 1900. Realizables). And Aim2 induced Realizables Scientific 'Dos jor, 'Tury' lab.' Address (Part 1900. Realizables). And Aim2 induced Realizables Scientific 'Dos jor, 'Tury' lab.' Address (Part 1900. Realizables). And Aim2 induced Realizables Scientific 'Dos jor, 'Tury' lab.' Address (Part 1900. Realizables). And Aim2 induced Realizables Scientific 'Dos jor, 'Tury' lab.' Address (Part 1900. Realizables). And Aim2 induced Realizables Scientific 'Dos jor, 'Realizables' labelles scientific 'Dos jor,


there is early evidence of efficacy in newly diagnosed GBM patients when TTFields therapy is added to immune checkpoint inhibitors

FOR MORE INFORMATION, USE THE QR CODE:

Overall Survival

2-THE-TOP single arm study vs. external controls

Phase 2 study of pembrolizumab plus TFields plus temporal process of pembrolizumab plus temporal process of pembrolizumab plus temporal process of pembrolizumab pembr

STELLAR phase 2 trial evaluated TTFields therapy + pemetrexed and cisplatin or carboplatin in MPM

N = 80

Previously Untreated, Unresectable MPM

- Pathological or histological evidence of MPM
- Locally advanced or metastatic disease
- ECOG performance status of 0 or 1

TTFields (150 kHz, > 18 h/day)

Pemetrexed/cisplatin or pemetrexed/carboplatin (up to 6 cycles)

Follow-up for survival

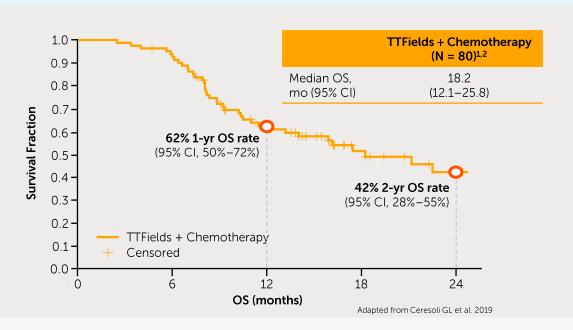
Start date: February 2015

Primary completion: April 2018 Study completion: April 2018

Study sites: 13 (Europe)

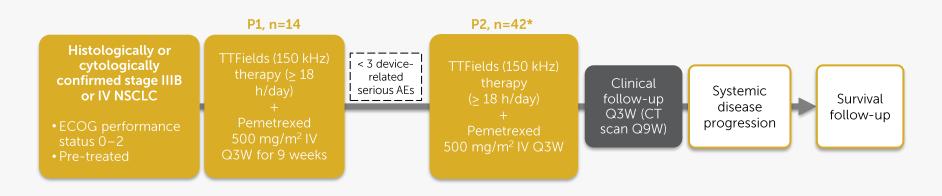
Primary endpoints:

OS


Secondary endpoints:

PFS, ORR (modified RECIST criteria for MPM), safety

MPM patients who used Optune Lua first line achieved 18.2 months median OS



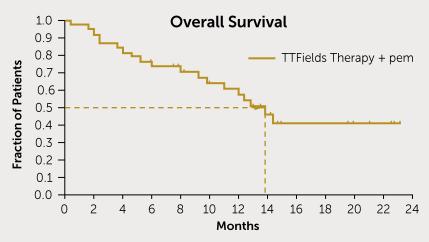
EF-15 phase 2 trial evaluated TTFields therapy + pemetrexed in NSCLC

Start date: May 2008

Primary completion: July 2011 Study completion: July 2011 Study sites: 4 (Switzerland)

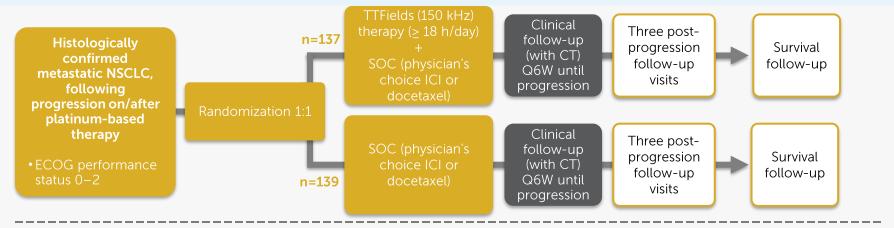
Primary endpoints:

Device related toxicity (P1), Time to in-field progression (P2)


Secondary endpoints:

OS, ORR, time to systemic progression, safety

TTFields therapy together with pemetrexed improved disease control within the treatment field in second line NSCLC



	Median in-field PFS	Median PFS	Median OS	1yr Survival
TTFields + Pemetrexed	6.5 mo	5.0 mo	13.8 mo	57.0%
Pemetrexed alone	n/a	2.9 mo	8.3 mo	29.7%

LUNAR phase 3 trial evaluated TTFields therapy + SOC in metastatic NSCLC, post-platinum

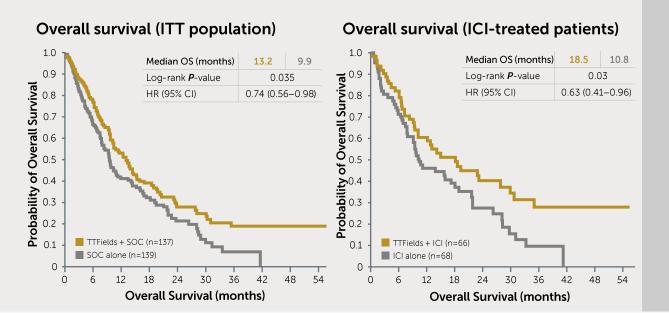
Start date: December 2016

Primary completion: December 2022 Study completion: December 2022

Study sites: 124

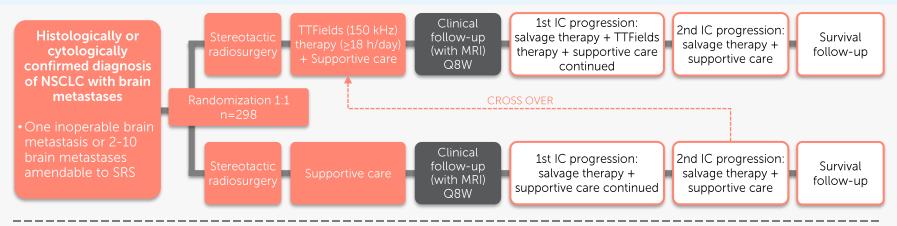
Primary endpoints:

OS


Secondary endpoints:

OS (by cohort), PFS, ORR, QoL, safety

TTFields therapy together with either standard of care therapies or immune checkpoint inhibitor improved overall survival in second-line NSCLC



METIS phase 3 trial evaluated TTFields therapy + supportive care in NSCLC brain metastases, following SRS

Start date: October 2016

Primary completion: March 2023

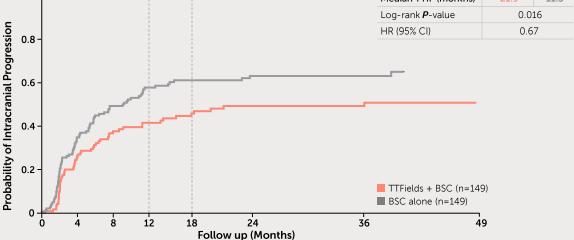
Study sites: 125

Primary endpoints:

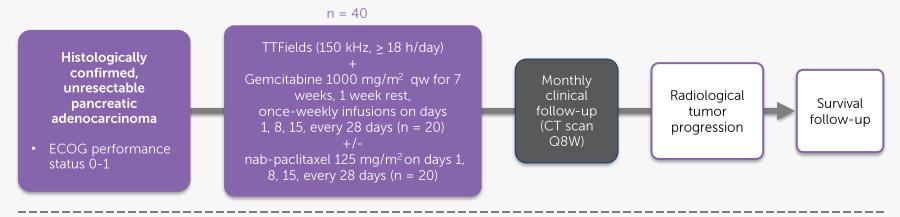
Time to intracranial progression

Secondary endpoints:

• Time to neurocognitive failure, OS, radiological response rate, time to 2nd intracranial progression, time to 1st and 2nd progression by cohort (1-4 metastases, 5-10 metastases), rate of intracranial progression at two-month intervals, time to distant progression, rate of cognitive decline, neurocognitive failure-free survival, quality of life, adverse events



TTFields therapy with supportive care following SRS improved time to intracranial progression in patients with brain metastases from NSCLC



PANOVA phase 2 trial evaluated TTFields therapy + gemcitabine +/- nab-paclitaxel in pancreatic cancer

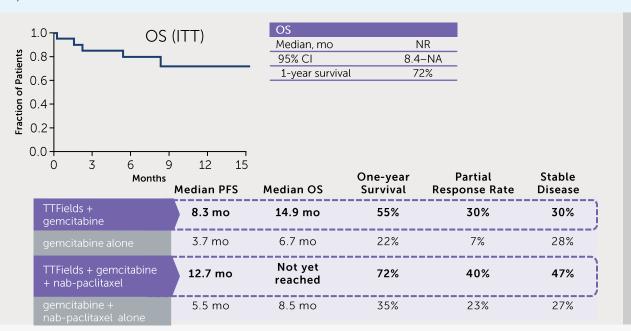
Start date: Nov 2013

Primary completion date: Dec 2017 Study completion date: Dec 2017

Study sites: 6 (Europe)

Primary endpoint:

Safety


Secondary endpoints:

TTFields monthly usage, PFS, OS

TTFields therapy together with chemotherapy were well tolerated for patients with advanced pancreatic cancer

encouraging response rate and durability signals in EF-31 phase 2 gastric cancer trial

FOR MORE INFORMATION, USE THE QR CODE:

EF-31 PHASE 2 PILOT TRIAL DESIGN¹

encouraging signals in liver cancer despite poor prognosis and low treatment exposure in HEPANOVA phase 2 trial

FOR MORE INFORMATION, USE THE QR CODE:

HEPANOVA PHASE 2 PILOT TRIAL DESIGN²

screening and baseline evaluation TTFields (150 kHz) + daily sorafenib

follow-up q4w + CT/MRI scan q12w until progression

post-progression follow-up

survival follow-up

76%

DISEASE CONTROL RATE (n=21)

VS. 43% CONTROL³

95%

OBJECTIVE RESPONSE RATE (n=21)

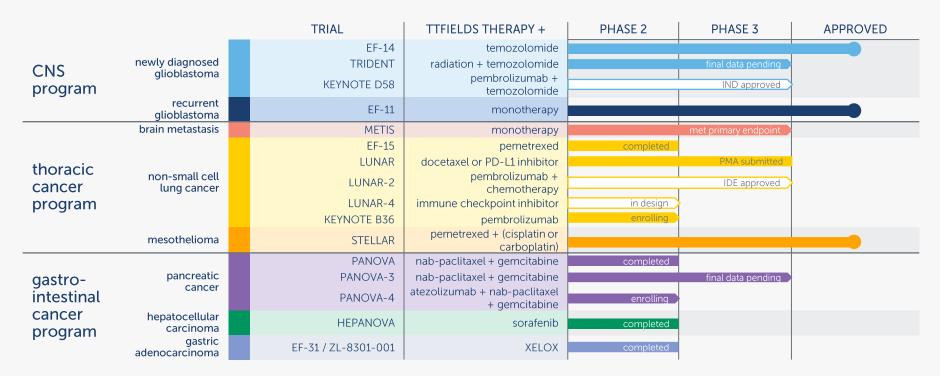
VS. 4.5% CONTROL

91%

DISEASE CONTROL RATE

OBJECTIVE RESPONSE RATE

patients that received > 12 wks of TTFields (n=11)


Gkika E et al. Cancers (Basel), 2022 Mar 18;14(6):1568. doi: 10.3390/cancers14061568

Novocure, Ltd. Effect of Tumor Treating Fields (TTFields, 150kHz) Concomitant With Sorafenib For Advanced Hepatocellular Carcinoma (HCC) (HEPANOVA) In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000-[cited 2018 October]. Available from: https://clinicaltrials.gov/ct2/show/NCT03606590. NLM Identifier:NCT03606590

Llovet JM et al. N. Engl. J. Med. 2008;359:378-390. doi: 10.1056/NEJMoa0708857

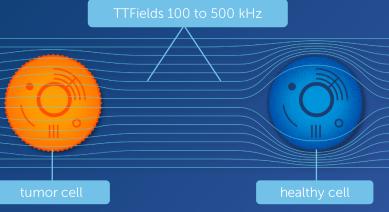
platform technology driving robust clinical pipeline

patientforward*

tumor treating fields mechanism of action overview

patients with aggressive solid tumors often face suboptimal survival outcomes, despite advancements in treatment modalities

These outcomes are due to diverse treatment challenges, including:



With a poor survival outlook, physicians and patients need additional treatment strategies

Tumor Treating Fields (TTFields) are electric fields that exert physical forces to kill cancer cells via a variety of mechanisms

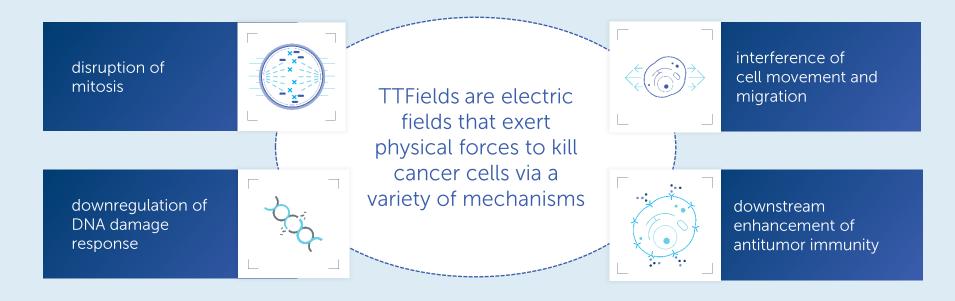
TTFields spare healthy cells because they have different properties than cancer cells across a range of tumor types

a growing body of evidence supporting multiple mechanisms of action

FOR MORE INFORMATION, USE THE QR CODE:

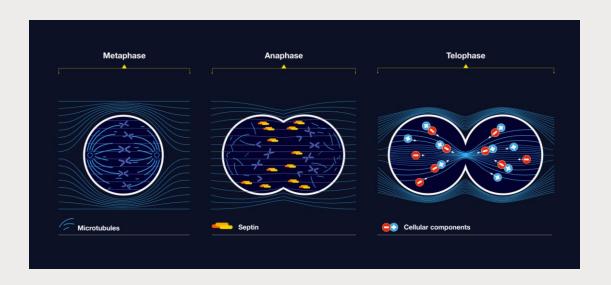
JOURNAL ARTICLE ACCEPTED MANUSCRIPT

solid organ cancers.


- Preclinical research has shown interference with cancer cell motility and migration, activation of anti-tumor immunity, downregulation of genes important for DNA damage repair, and other potential mechanisms
- May demonstrate enhanced effects across solid tumor types when used with chemotherapy, radiotherapy, immune checkpoint inhibition, or PARP inhibition in preclinical models

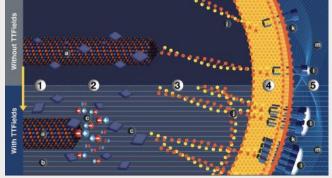
studies (both in vitro and in vivo). An improved understanding of how TTFields works will guide strategies focused on the timing and combination of TTFields with other therapies, to further improve survival outcomes in patients with

Tumor Treating Fields have multiple, distinct mechanisms of action



TTFields have been shown to disrupt mitosis in cancer cells by exerting physical forces on their polar components

FOR MORE INFORMATION, USE THE QR CODE:



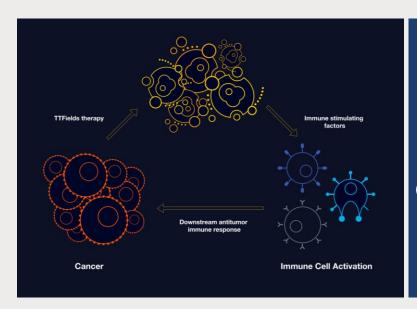
TTFields have been shown to alter the organization and dynamics of the cytoskeleton, disrupting cancer cell motility and migration

FOR MORE INFORMATION, USE THE QR CODE:

a) microtubule; b) TTFields; c) tubulin aligned with field; i) actin fiber; k) integrin; l) focal adhesion; m) extracellular matrix.

A model illustrating the mechanism by which TTFields modulates cancer cell motility.

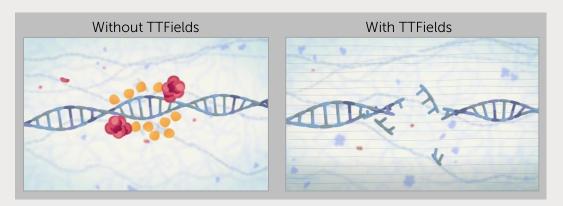
- (1) Microtubules are required to specify the direction of cell movement. GEF-H1 catalytic activity is downregulated through microtubule binding.
- (2) TTFields exert directional forces on polar tubulins leading to their alignment in the direction of the field. This, in turn, leads to the reorganization of the microtubule network resulting in changes in the abundance of microtubules and initiation of the GEF-H1/RhoA/ROCK signaling pathway
- (3) to increase actin bundling
- (4) and formation of focal adhesions.
- (5) which disrupt cell polarity and migration directionality.



TTFields-mediated cell disruption activates the immune system and triggers a downstream antitumor cell response

FOR MORE INFORMATION, USE THE QR CODE:

TTFields induces downstream immunogenic cell death, including release of DAMPs (damage-associated molecular patterns)



TTFields downregulate genes important for DNA damage repair

FOR MORE INFORMATION, USE THE QR CODE:

TTFields disrupt DNA damage repair in cancer cells by downregulating genes that are part of the well-known FA-BRCA pathway^{1,2}

Tumor-treating fields elicit a conditional vulnerability to ionizing radiation via the downregulation of BRCA1 signaling and reduced DNA double-strand break repair capacity in non-small cell lung cancer cell lines

Thinks are invented to turned ate frequency afternating electric fields that are applied to turnor regions and calls using mission arrays. The predominant mechanism by which TTF-akts are thought to fall tumor cells is the disruption of mission and cell large center (MSCL); cell lines we found that there is a variable exposure in cell production and cell killing between these MSCLC cell lines that was in dependent of pSI status. TTF-did instrument increased the GSM population, will killing between these MSCLC cell lines that was independent of pSI status. TTF-did instrument increased the GSM population, will concomitant reduction in S-phase cells followed by the appearance of a sub-G1 population indicative of apoptosis. Tempora change is game appreciation during TTFields exposure was evaluated to identify melecular signaling changes underlying the differential TTFields response. The most differentially expressed genes were associated with the city city and cell profession pathways. However, the expression of penns found within the IBPCAT DNA-damage response were significantly downspublished (Pr. - 500) during TTFIElds tourners. ONL double has two breast CEBS spain from Loneaus when not are expressed to TTFIElds as combination. These findings suggest that TTFelds induce a state of 'BRCAnsas' is ading to a conditional enhanced sensitivity to inschip adiation and provides a strong rationale for the use of TTFelds as a conditional with adiation or other DMA-desinging signific.

Cell Deeth and Disease (2017) 8, e2711; doi:10.1035/cdds.2017.136; published online 30 March 2017

TTFields is a highly versatile firstin-class treatment modality

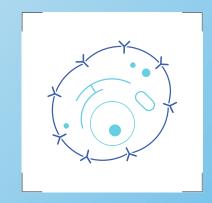
FOR MORE INFORMATION, USE THE QR CODE:

- TTFields therapy has significant potential for broad applicability across solid tumor types and lines of therapy
 - Investigation of TTFields therapy is ongoing across clinical trials in multiple tumor types
 - In approved indications, TTFields therapy is well tolerated, suggesting a low risk of additive systemic toxicity when used with other cancer treatment modalities



TTFields therapy can be added to cancer treatment modalities in approved indications


TTFields demonstrate enhanced effects across multiple solid tumor types, when used concomitantly with each of the following:


Chemotherapy

Radiation therapy (RT)

Targeted therapies

Immuno-oncologic (IO) agents