Gliadel wafer is a biodegradeable impant that can be inserted into the resection cavity after removing a brain tumor. It slowly releases chemotherapy directly to the area most likely to have a recurrence. It was FDA approved about 10 years ago, based on trials run before Temodar was available. This study updates the results to include people using Temodar and shows about the same results.. a small improvement in survival time but it had a major - about 30% - reduced chance of dying for people who used the Gliadel vs the placebo wafer in the trial.
There were minimal increases in side effects. Worth considering if you are having a brain tumor surgery - but with one big warning - there are some clinical trials that do not allow people who have used Gliadel. So it is very important to plan out what you want to do after the surgery. It is a very hard decision if your preferred clinical trial doesn't allow for the use of Gliadel.. you trade an approved treatment with a good chance of helping most patients a little and a few patients a lot (gliadel) for an unproven treatment in the trial that has the chance for a bigger improvement - but has not been shown to be safe or effective yet.
Core Evid. 2012;7:115-30. doi: 10.2147/CE.S23244. Epub 2012 Oct 26.
Polifeprosan 20, 3.85% carmustine slow-release wafer (Gliadel) in malignant glioma: evidence for role in era of standard adjuvant temozolomide.
Kleinberg L.
Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Oncology Center Johns Hopkins University, Baltimore, MD, USA.
Abstract
The Polifeprosan 20 with carmustine (BCNU, bis-chloroethylnitrosourea, Gliadel(®)) polymer implant wafer is a biodegradable compound containing 3.85% carmustine which slowly degrades to release carmustine and protects it from exposure to water with resultant hydrolysis until the time of release. The carmustine implant wafer was demonstrated to improve survival in blinded placebo-controlled trials in selected patients with newly diagnosed or recurrent malignant glioma, with little increased risk of adverse events. Based on these trials and other supporting data, US and European regulatory authorities granted approval for its use in recurrent and newly diagnosed malignant glioma, and it remains the only approved local treatment. The preclinical and clinical data suggest that it is optimally utilized primarily in the proportion of patients who may have total or near total removal of gross tumor. The aim of this work was to review the evidence for the use of carmustine implants in the management of malignant astrocytoma (World Health Organization grades III and IV), including newly diagnosed and recurrent disease, especially in the setting of a standard of care that has changed since the randomized trials were completed. Therapy has evolved such that patients now generally receive temozolomide chemotherapy during and after radiotherapy treatment. For patients undergoing repeat resection for malignant glioma, a randomized, blinded, placebo-controlled trial demonstrated a median survival for 110 patients who received carmustine polymers of 31 weeks compared with 23 weeks for 122 patients who only received placebo polymers. The benefit achieved statistical significance only on analysis adjusting for prognostic factors rather than for the randomized groups as a whole (hazard ratio = 0.67, P = 0.006). A blinded, placebo-controlled trial has also been performed for carmustine implant placement in newly diagnosed patients prior to standard radiotherapy. Median survival was improved from 11.6 to 13.9 months (P = 0.03), with a 29% reduction in the risk of death. When patients with glioblastoma multiforme alone were analyzed, the median survival improved from 11.4 to 13.5 months, but this improvement was not statistically significant. When a Cox's proportional hazard model was utilized to account for other potential prognostic factors, there was a significant 31% reduction in the risk of death (P = 0.04) in this subgroup. Data from other small reports support these results and confirm that the incidence of adverse events does not appear to be increased meaningfully. Given the poor prognosis without possibility of cure, these benefits from a treatment with a favorable safety profile were considered meaningful. There is randomized evidence to support the use of carmustine wafers placed during resection of recurrent disease. Therefore, although there is limited specific evidence, this treatment is likely to be efficacious in an environment when nearly all patients receive temozolomide as part of initial management. Given that half of the patients in the randomized trial assessing the value of carmustine implants in recurrent disease had received prior chemotherapy, it is likely that this remains a valuable treatment at the time of repeat resection, even after temozolomide. There are data from multiple reports to support safety. Although there is randomized evidence to support the use of this therapy in newly diagnosed patients who will receive radiotherapy alone, it is now standard to administer both adjuvant temozolomide and radiotherapy. There are survival outcome reports for small cohorts of patients receiving temozolomide with radiotherapy, but this information is not sufficient to support firm recommendations. Based on the rationale and evidence of safety, this approach appears to be a reasonable option as more information is acquired. Available data support the safety of using carmustine wafers in this circumstance, although special attention to surgical guidelines for implanting the wafers is warranted.
PMID: 23118709 [PubMed - in process]